Three economist's tools for antitrust analysis: A non-technical introduction

Russell Pittman

Antitrust Division, U.S. Department of Justice Beograd, Serbia, June 2016

The views expressed are not necessarily those of the U.S. Department of Justice.

Three popular additions to the economist's toolbox in recent years

- Critical loss analysis
- Upward pricing pressure
- Vertical arithmetic
- The first two may be used for both market definition and competitive effects analysis.
- The third analyzes the possible incentives for foreclosure that may arise from a vertical merger or a vertical restraint.

$1^{\text {st }}$ Tool: Critical loss analysis

- Useful for focusing on specific questions in both market definition and competitive effects analysis
- Market definition: Would a hypothetical monopolist find it profitable to raise price?
- Competitive effects: Would the merged firm find it profitable to raise price?
- Current profits are

$$
\text { - } \pi=(P-C) Q
$$

- New profits would be
- $\pi^{\prime}=(P+\Delta P-C)(Q-\Delta Q)$
- Which is greater?
- (Assume costs are constant and unchanged)

Doing the math...

- Critical loss point is

$$
\frac{\Delta Q}{Q}=\frac{\Delta P^{\prime} P}{M+\Delta P^{\prime} P}
$$

- where

$$
M=\frac{P-C}{P}
$$

- If ΔQ that results from ΔP is too high, the price increase would not be profitable.
- If we know elasticity of demand, we have the answer (assuming it doesn't change).
- If we don't, focus on where the demand "goes".

For example...

- Suppose 3 firms X, Y, and Z
- X and Y propose to merge

Firm	Current output	Capacity	Price	Variable cost
X	100	105	$\$ 50$	$\$ 30$
Y	80	85	$\$ 50$	$\$ 30$
Z	60	85	$\$ 50$	$?$

Profitable to raise price?

- Would merged firm XY raise price by, say, 5\%?
- Gain $\$ 2.50$ on each unit still sold, but lose $\$ 20$ on each unit sale lost
- $\Delta P / P=5 \%, m=40 \%$
- So critical $\Delta Q / Q=5 /(40+5)=1 / 9=11 \%$
- 11% of 180 is 20
- To investigate: Would the merged firm lose sales of 20 if it raised price by $\$ 2.50$?

And now the hard part: Where would those lost sales of 20 go?

- Demand side: How sensitive are customers to price?
- Supply side: Are there other likely sources for the 20?
- Z has "excess capacity" of 25 , but at what cost? And wouldn't Z like the higher price too?
- Imports, but at what cost? Tariffs or quotas?
- Increasingly imperfect substitutes?
- Remember that neither the 25 of Z nor imports nor other substitutes are being sold now: Inferior in some way? How much?
- "Critical loss" is 20
- If we believe that "actual loss" <20, $\Delta \mathrm{P}$ looks profitable; worry about unilateral anticompetitive effects from merger
- If we believe that "actual loss" > 20, $\Delta \mathrm{P}$ looks unprofitable; less worry
- Alternatively, if this were a market definition exercise, if "actual loss" < 20, XY looks like a market; if "actual loss" > 20, market must include Z.

Another perspective

- Not "critical loss" but "critical elasticity": At what elasticity of demand would a post-merger price increase be profitable?
- Solve same equation for critical elasticity: $\varepsilon=1 /(M+$ $\Delta P / P)=1 / .45=2.2$
- Test for this econometrically?
- Natural experiments from past?
- Customer surveys of switching behavior?
- Footnote for critical loss AND critical elasticity:
- If margins are high, companies will point to them and say that post-merger the firms wouldn't consider raising prices and endangering those existing high margins.
- But the standard profit-maximization calculation (the "Lerner index", $M=1 / \varepsilon$) suggests that if margins are high, that means that demand is inelastic - otherwise the firms would have to lower their margins to compete.

$2^{\text {nd }}$ tool: Upward pricing pressure

- What are the incentives for a firm to raise its price following its merger with a competitor?
- Some simple analytics:
- Premerger: $\pi_{A}=\left(P_{A}-C_{A}\right) Q_{A}$, so to maximize profits,
- $\delta \pi_{A} / \delta P_{A}=\left(P_{A}-C_{A}\right)\left(\delta Q_{A} / \delta P_{A}\right)+Q_{A}=0$
- Postmerger, $\pi_{M}=\left(P_{A}-C_{A}\right) Q_{A}+\left(P_{B}-C_{B}\right) Q_{B}$, so to maximize profits,
- $\delta \pi_{M} / \delta P_{A}=\left(P_{A}-\mathrm{C}_{A}\right)\left(\delta \mathrm{Q}_{A} / \delta \mathrm{P}_{\mathrm{A}}\right)+\mathrm{Q}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{B}}-\mathrm{C}_{\mathrm{B}}\right)\left(\delta \mathrm{Q}_{\mathrm{B}} / \delta \mathrm{P}_{\mathrm{A}}\right)$ $=0$.
- The CHANGE in equilibrium P_{A} is $\left(P_{B}-C_{B}\right) D_{A B}$, where
- D_{AB} is the DIVERSION RATIO from firm A to firm B, defined as the proportion of the sales that A loses when it raises price that are diverted to/recaptured by B.

How estimate $D_{A B}$, the diversion ratio from firm A to firm B?

- Default first approximation is firm B's market share, adjusted by elasticity of demand for the overall market.
- Other important factors:
- Available capacity of firm B
- Available capacity of other competitors
- Other possible sources of the product, including imports or production substitution by manufacturers of other goods
- Potential substitutes for the product, and their availability

A Merger (Without Efficiencies)

- Firms A and B merge
- Consider the merged entity's incentive to raise the price of A's product

POST-MERGER

Firm B

A Closer Look at Recaptured Sales

- The green rectangle is the value of diverted sales
- It is the product of two separate terms
- The sales lost by A that are subsequently recaptured by B. All else equal, the greater the diversion between A and B, the greater the size of this term.
- The margin on product B
- The second term is entirely intuitive, even if it receives less attention than diversion in the 1992 HMGs
- Both terms must be non-trivial for significant effect

$3^{\text {rd }}$ tool: The "vertical arithmetic"

- Consider a vertical merger - for example, a manufacturer buying its supplier of raw materials
- Note that similar analysis is appropriate for potentially exclusionary vertical restraints as well
- How much should we be worried about competitive problems?
- In particular, is the merged, newly integrated firm likely to engage in anticompetitive foreclosure - i.e., to deny access to important inputs to its nonintegrated rivals?
- Non-integrated rivals to agency: They will never treat us fairly.
- Merger partners to agency: We would only be hurting ourselves by treating a customer badly.

A stylized example

- $\mathrm{M}_{1}=$ margin for selling iron ore to steel producers - $\mathrm{M}_{2}=$ margin for selling steel to steel customers
${ }^{\circ} I_{B}=$ sales of iron ore to steel producer B
- $\delta=$ share of any steel sales lost by steel producer B that are recovered by the integrated firm

A stylized example

-If integrated firm refuses to supply iron ore to B , it loses $\mathrm{I}_{\mathrm{B}} \mathrm{M}_{1}$
-However, it gains $\delta I_{B}\left(M_{1}+M_{2}\right)$ -If $\delta=0$, then on net integrated firm would lose $\mathrm{I}_{\mathrm{B}} \mathrm{M}_{1}$ from refusal to supply
-If $\delta=A$, then on net integrated firm would gain $\mathrm{I}_{\mathrm{B}} \mathrm{M}_{2}$ from refusal to supply
-Breakeven point for integrated firm to refuse to supply is $\delta=M_{1} /\left(M_{1}+M_{2}\right)$

A stylized example

-Again, breakeven point for profitable foreclosure is $\delta=$ $M_{1} /\left(M_{1}+M_{2}\right)$ -If M_{1} much larger than M_{2}, foreclosure looks unlikely: δ must be very high to make the strategy work
-If M_{2} much larger than M_{1}, foreclosure looks more likely: even small δ can make the strategy work
-But how estimate δ ?

How estimate δ ?

- Recall the definition: $\delta=$ share of any steel sales lost by steel producer B that are recovered by the integrated firm
- This looks like a diversion ratio! So...
- Default first approximation is firm A's market share in steel, adjusted by elasticity of demand for steel overall.
- Other important factors:
- Available steel capacity of firm A
- Excess capacity of other steel producers (though might they be cut off by the integrated firm as well?)
- Other possible sources of iron ore, including entry and imports
- Other possible sources of steel, including imports
- Potential substitutes for steel
- Conclusion: M_{1} and M_{2} provide clues as to the likelihood that foreclosure would be a profitable strategy. Then focus on δ to learn even more.

